|
@@ -0,0 +1,746 @@
|
|
1
|
+# 基本概念
|
|
2
|
+
|
|
3
|
+InfluxDB基于行协议(line protocol),一个行代表这个point的数据。
|
|
4
|
+
|
|
5
|
+```
|
|
6
|
+weather,location=us-midwest temperature=82 1465839830100400200
|
|
7
|
+
|
|
8
|
+以上代表着:
|
|
9
|
+measurement,tag_set field_set timestamp
|
|
10
|
+
|
|
11
|
+weather就是measurement
|
|
12
|
+location=us-midwest就是tag_set, 是一组键值对
|
|
13
|
+temperature就是field_set,是一组键值对
|
|
14
|
+1465839830100400200就是timestamp,即时间戳(016-06-13T17:43:50.1004002Z)
|
|
15
|
+
|
|
16
|
+注意:
|
|
17
|
+--measurement和field_set以及field_set和timestamp之间都有一个空格
|
|
18
|
+--timestamp是Unix型纳秒级,如果不填,会默认使用服务器的纳秒级UTC时间戳.当使用服务器集群的时候,这些服务器集群的时间必须同步,否则会造成数据的不准确
|
|
19
|
+
|
|
20
|
+举例:
|
|
21
|
+--weather,location=us-midwest,season=summer temperature=82 1465839830100400200
|
|
22
|
+--weather,location=us-midwest temperature=82,humidity=71 1465839830100400200
|
|
23
|
+```
|
|
24
|
+
|
|
25
|
+**数据类型**
|
|
26
|
+
|
|
27
|
+```
|
|
28
|
+在tag_set中,tag的值是string类型,InfluxDB不能基于tag的string类型值进行运算,即不能把tag的值作为InfluxQL函数的参数
|
|
29
|
+
|
|
30
|
+时间戳,timestamp是UNIX类型,最小时间戳-9223372036854775806,即1677-09-21T00:12:43.145224194Z。最大时间戳9223372036854775806,即2262-04-11T23:47:16.854775806Z。默认情况下时间戳的精度是纳秒,可以通过API更换时间戳的精度。
|
|
31
|
+
|
|
32
|
+Field值类型可以是float,integer, string, boolean。
|
|
33
|
+--weather,location=us-midwest temperature=82 1465839830100400200这里的82会被看作是float类型
|
|
34
|
+--weather,location=us-midwest temperature=82i 1465839830100400200这里的82会被看作是integer类型
|
|
35
|
+--weather,location=us-midwest temperature="too warm" 1465839830100400200这里的too warm会被看作是string类型
|
|
36
|
+--weather,location=us-midwest too_hot=true 1465839830100400200,这里的true就是boolean类型,表示true的可以是t,T, true, True, TRUE,表示false的可以是f,F, false, False, FALSE
|
|
37
|
+
|
|
38
|
+在同一个分片shard中存储不同类型的field值会报错:
|
|
39
|
+--INSERT weather,location=us-midwest temperature=82 1465839830100400200
|
|
40
|
+--INSERT weather,location=us-midwest temperature=82i 1465839830100400300
|
|
41
|
+ERR:{"error":"field type conflict:input field\"temperature\" on measuremetn \"weather\" is type int64}
|
|
42
|
+
|
|
43
|
+但是在不同的分片Shard中存储不同类型的field值不会报错:
|
|
44
|
+--INSERT weather,location=us-midwest temperature=82 1465839830100400200
|
|
45
|
+--INSERT weather,location=us-midwest temperature=82i 1465839830100400300
|
|
46
|
+```
|
|
47
|
+
|
|
48
|
+**引号**
|
|
49
|
+
|
|
50
|
+```
|
|
51
|
+不要在时间戳上加双引号:
|
|
52
|
+--INSERT weather,location=us-midwest temperature=82 "1465839830100400200"
|
|
53
|
+ERR: {"error":"unable to parse 'weather,location=us-midwest temperature=82 \"1465839830100400200\"': bad timestamp"}
|
|
54
|
+
|
|
55
|
+不要在字段field值上加单引号:
|
|
56
|
+--INSERT weather,location=us-midwest temperature='too warm'
|
|
57
|
+ERR: {"error":"unable to parse 'weather,location=us-midwest temperature='too warm'': invalid boolean"}
|
|
58
|
+
|
|
59
|
+不要在tag的key,value,field的key上加单引号或双引号,这样虽然不会报错,但InfluxDB会把引号看作是measruements的一部分:
|
|
60
|
+--INSERT "weather",location=us-midwest temperature=87 1465839830100400200
|
|
61
|
+--SHOW MEASURMENTS
|
|
62
|
+--会列出"weather"
|
|
63
|
+--这样查询起来会麻烦:SELECT * FROM "\"weather\""
|
|
64
|
+
|
|
65
|
+不要在filed值上加双引号,InfluxDB会看作是字符串类型:
|
|
66
|
+--INSERT weather,location=us-midwest temperatrue="82"
|
|
67
|
+```
|
|
68
|
+
|
|
69
|
+**特殊字符Special Characters**
|
|
70
|
+
|
|
71
|
+```
|
|
72
|
+,通过\转义:
|
|
73
|
+weather,location=us\,midwest temperature=82 1465839830100400200
|
|
74
|
+
|
|
75
|
+=通过\转义:
|
|
76
|
+weather,location=us-midwest temp\=rature=82 1465839830100400200
|
|
77
|
+
|
|
78
|
+空格通过\转义:
|
|
79
|
+weather,location\ place=us-midwest temperature=82 1465839830100400200
|
|
80
|
+
|
|
81
|
+measurement中的,通过\转义:
|
|
82
|
+wea\,ther,lication=us-midwest temperature=82 1465839830100400200
|
|
83
|
+
|
|
84
|
+measurement中的空格通过\转义:
|
|
85
|
+wea\ ther,location=us-midwest temperature=82 1465839830100400200
|
|
86
|
+
|
|
87
|
+字段filed值中的双引号用\转义:
|
|
88
|
+weather,location=us-midwest temperature="too\"hot\"" 1465839830100400200
|
|
89
|
+
|
|
90
|
+/或\的表现:
|
|
91
|
+--weather,location=us-midwest temperature_str="too hot/cold" 1465839830100400201
|
|
92
|
+--weather,location=us-midwest temperature_str="too hot\cold" 1465839830100400202
|
|
93
|
+--weather,location=us-midwest temperature_str="too hot\\cold" 1465839830100400203
|
|
94
|
+--weather,location=us-midwest temperature_str="too hot\\\cold" 1465839830100400204
|
|
95
|
+--weather,location=us-midwest temperature_str="too hot\\\\\cold" 1465839830100400205
|
|
96
|
+--weather,location=us-midwest temperature_str="too hot\\\\\cold" 1465839830100400206
|
|
97
|
+
|
|
98
|
+> SELECT * FROM "wather"
|
|
99
|
+name:weather
|
|
100
|
+time location temperature_str
|
|
101
|
+1465839830100400201 us-midwest too hot/cold
|
|
102
|
+1465839830100400202 us-midwest too hot\cold
|
|
103
|
+1465839830100400203 us-midwest too hot\cold 两个会去掉一个
|
|
104
|
+1465839830100400204 us-midwest too hot\\cold 三个去掉一个
|
|
105
|
+1465839830100400205 us-midwest too hot\\cold 四个去掉两个
|
|
106
|
+1465839830100400206 us-midwest too hot\\\cold 5个去掉两个
|
|
107
|
+```
|
|
108
|
+
|
|
109
|
+**关键字Keywords**
|
|
110
|
+
|
|
111
|
+```
|
|
112
|
+time可以是database, measurement, retension plocy, subscription, user的名称,time不能作为tag或field的key
|
|
113
|
+```
|
|
114
|
+
|
|
115
|
+**聚合aggregation**
|
|
116
|
+
|
|
117
|
+InfluxQL函数,对一组数据进行计算。
|
|
118
|
+
|
|
119
|
+```
|
|
120
|
+
|
|
121
|
+==COUNT()
|
|
122
|
+> SELECT COUNT("water_level") FROM "h2o_feet"
|
|
123
|
+返回h2o_feet"这个measurement中water_level这个字段field值不为空的数量
|
|
124
|
+
|
|
125
|
+> SELECT COUNT(*) FROM "h2o_feet"
|
|
126
|
+返回h2o_feet"这个measurement中所有字段字段field值不为空的数量
|
|
127
|
+
|
|
128
|
+> SELECT COUNT(/water/) FROM "h2o_feet"
|
|
129
|
+返回h2o_feet"这个measurement中字段包含water并且值不为空的数量
|
|
130
|
+
|
|
131
|
+> SELECT COUNT("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(200) LIMIT 7 SLIMIT 1
|
|
132
|
+时间范围,12分钟的时间间隔进行分组,没有值的用200填充,数据点个数最多为7,序列个数最多为1
|
|
133
|
+```
|
|
134
|
+
|
|
135
|
+# InfluxQL-基本
|
|
136
|
+
|
|
137
|
+**连接和退出数据库**
|
|
138
|
+
|
|
139
|
+```
|
|
140
|
+$ .\influx -precision rfc3339
|
|
141
|
+Connected to http://localhost:8086 version1.7.7
|
|
142
|
+InfluxDB shell version:1.7.1
|
|
143
|
+
|
|
144
|
+rfc3339的时间戳格式是:YYYY-MM-DDTHH:MM:SS.nnnnnnnnnZ
|
|
145
|
+
|
|
146
|
+$ exit
|
|
147
|
+
|
|
148
|
+```
|
|
149
|
+
|
|
150
|
+**创建数据库**
|
|
151
|
+
|
|
152
|
+- 运行`influxd.exe`文件
|
|
153
|
+- 启动influx: `./influx -precision rfc3339`
|
|
154
|
+- 创建数据库
|
|
155
|
+```
|
|
156
|
+$ CREATE DATABASE NOAA_water_database
|
|
157
|
+```
|
|
158
|
+
|
|
159
|
+**下载测试数据并写入本地数据库**
|
|
160
|
+
|
|
161
|
+```
|
|
162
|
+下载数据:
|
|
163
|
+$ curl https://s3.amazonaws.com/noaa.water-database/NOAA_data.txt -o NOAA_data.txt
|
|
164
|
+这样在目录中多了一个NOAA_data.txt文件
|
|
165
|
+
|
|
166
|
+导入本地数据库:
|
|
167
|
+$ ./influx -import -path=NOAA_data.txt -precision=s -database=NOAA_water_database
|
|
168
|
+这时会报错:unknown arguments: .txt -precision=s
|
|
169
|
+在`influx.exe`文件所在目录,把`NOAA_data.txt`改成`NOAA_data`
|
|
170
|
+$ ./influx -import -path=NOAA_data -precision=s -database=NOAA_water_database
|
|
171
|
+
|
|
172
|
+连接数据库:
|
|
173
|
+$ ./influx -precsion rfc3339 -database NOAA_water_database
|
|
174
|
+
|
|
175
|
+查询所有的表,即measument:
|
|
176
|
+$ SHOW measurements
|
|
177
|
+```
|
|
178
|
+
|
|
179
|
+# InfluxQL-Data exploration
|
|
180
|
+> 查询
|
|
181
|
+
|
|
182
|
+**统计某个非空值字段的数量**
|
|
183
|
+
|
|
184
|
+```
|
|
185
|
+SELECT COUNT("water_level") FROM h2o_feet
|
|
186
|
+```
|
|
187
|
+
|
|
188
|
+**选择前几个**
|
|
189
|
+
|
|
190
|
+```
|
|
191
|
+SELECT * FROM h2o_feet LIMIT 5
|
|
192
|
+```
|
|
193
|
+
|
|
194
|
+**查询所有fields和tags**
|
|
195
|
+```
|
|
196
|
+ SELECT * FROM "h2o_feet"
|
|
197
|
+```
|
|
198
|
+
|
|
199
|
+**选择特定的tag和field**
|
|
200
|
+
|
|
201
|
+```
|
|
202
|
+$ ./influx -precsion rfc3339
|
|
203
|
+$ USE NOAA_water_database
|
|
204
|
+$ SELECT "level description","location","water_level" FROM "h2o_feet"
|
|
205
|
+```
|
|
206
|
+
|
|
207
|
+**选择tag和field,用类型区分**
|
|
208
|
+
|
|
209
|
+```
|
|
210
|
+SELECT "level description"::field,"location"::tag,"water_level"::field FROM "h2o_feet"
|
|
211
|
+```
|
|
212
|
+
|
|
213
|
+**选择所有的field**
|
|
214
|
+
|
|
215
|
+```
|
|
216
|
+SELECT *::field FROM "h2o_feet"
|
|
217
|
+```
|
|
218
|
+
|
|
219
|
+**field简单计算**
|
|
220
|
+```
|
|
221
|
+SELECT ("water_level" * 2) + 4 from "h2o_feet"
|
|
222
|
+```
|
|
223
|
+
|
|
224
|
+**从多个measurements中查询数据**
|
|
225
|
+```
|
|
226
|
+select * from "h2o_feet","h2o_PH"
|
|
227
|
+```
|
|
228
|
+
|
|
229
|
+**从多个measurements中查询数据,用上数据库名**
|
|
230
|
+
|
|
231
|
+```
|
|
232
|
+select * from "NOAA_water_database"."autogen"."h2o_feet"
|
|
233
|
+```
|
|
234
|
+
|
|
235
|
+**查询某个数据库中某个measuremnt的所有数据**
|
|
236
|
+
|
|
237
|
+```
|
|
238
|
+select * from "NOAA_water_database".."h2o_feet"
|
|
239
|
+```
|
|
240
|
+
|
|
241
|
+**查询与tag相关的数据必须至少带一个field**
|
|
242
|
+```
|
|
243
|
+select "water_level","location" from "h2o_feet"
|
|
244
|
+```
|
|
245
|
+
|
|
246
|
+> 过滤
|
|
247
|
+
|
|
248
|
+**Where语句语法**
|
|
249
|
+
|
|
250
|
+```
|
|
251
|
+field支持的操作符:
|
|
252
|
+field_key <operator> ['string' | boolean | float | integer]
|
|
253
|
+= <> != > >= < <=
|
|
254
|
+
|
|
255
|
+tag支持的操作符:
|
|
256
|
+tag_key <operator> ['tag_value']
|
|
257
|
+= <> !=
|
|
258
|
+```
|
|
259
|
+
|
|
260
|
+**根据字段值筛选**
|
|
261
|
+```
|
|
262
|
+select * from "h2o_feet" where "water_level">8
|
|
263
|
+```
|
|
264
|
+
|
|
265
|
+**根据某个字段的字符串值筛选**
|
|
266
|
+
|
|
267
|
+```
|
|
268
|
+select * from "h2o_feet" where "level description" = 'below 3 feet'
|
|
269
|
+```
|
|
270
|
+
|
|
271
|
+**根据某个计算筛选**
|
|
272
|
+```
|
|
273
|
+select * from "h2o_feet" where "water_level" + 2 > 11.9
|
|
274
|
+```
|
|
275
|
+
|
|
276
|
+**根据某个tag值筛选**
|
|
277
|
+```
|
|
278
|
+select "water_level" from "h2o_feet" wehre "location" = 'santa_monica'
|
|
279
|
+```
|
|
280
|
+
|
|
281
|
+**根据tag和field筛选**
|
|
282
|
+```
|
|
283
|
+select "water_level" from "h2o_feet" where "location" <> 'santa_monica' adn (water_level < -0.59 OR water_level > 9.95)
|
|
284
|
+```
|
|
285
|
+
|
|
286
|
+**根据timestamp筛选**
|
|
287
|
+```
|
|
288
|
+select * from h2o_feet wehre time > now() -7d
|
|
289
|
+```
|
|
290
|
+
|
|
291
|
+> 分组
|
|
292
|
+
|
|
293
|
+**根据tag分组**
|
|
294
|
+
|
|
295
|
+```
|
|
296
|
+ select MEAN(water_level) from h2o_feet group by location
|
|
297
|
+ 根据location分组后,取每个分组中water_level字段的平均值
|
|
298
|
+```
|
|
299
|
+
|
|
300
|
+**根据多个tag分组**
|
|
301
|
+```
|
|
302
|
+select MEAN(index) from h2o_feet group by lcoation,randtag
|
|
303
|
+```
|
|
304
|
+
|
|
305
|
+**根据所有tag分组**
|
|
306
|
+```
|
|
307
|
+select MEAN(index) from h2o_feet group by *
|
|
308
|
+```
|
|
309
|
+
|
|
310
|
+**根据时间间隔分组**
|
|
311
|
+```
|
|
312
|
+SELECT COUNT("water_level") FROM "h2o_feet" WHERE "location"='coyote_creek' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m)
|
|
313
|
+```
|
|
314
|
+
|
|
315
|
+**根据时间间隔和tag分组**
|
|
316
|
+```
|
|
317
|
+SELECT COUNT("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m),"location"
|
|
318
|
+```
|
|
319
|
+
|
|
320
|
+**根据时间间隔分组并移前**
|
|
321
|
+```
|
|
322
|
+SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location"='coyote_creek' AND time >= '2015-08-18T00:06:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(18m,6m)
|
|
323
|
+```
|
|
324
|
+
|
|
325
|
+**groupby和fill的结合**
|
|
326
|
+
|
|
327
|
+```
|
|
328
|
+> SELECT MAX("water_level") FROM "h2o_feet" WHERE "location"='coyote_creek' AND time >= '2015-09-18T16:00:00Z' AND time <= '2015-09-18T16:42:00Z' GROUP BY time(12m) fill(100)
|
|
329
|
+```
|
|
330
|
+
|
|
331
|
+> INTO
|
|
332
|
+
|
|
333
|
+**在原来数据库基础上复制出一个新的数据库**
|
|
334
|
+
|
|
335
|
+重命名一个数据库是不可能的,只能在原来数据库基础上创建一个新的数据库,用INTO语法。
|
|
336
|
+```
|
|
337
|
+SELECT * INTO "copy_NOAA_water_database"."autogen".:MEASUREMENT FROM "NOAA_water_database"."autogen"./.*/ GROUP BY *
|
|
338
|
+
|
|
339
|
+:MEASUREMENT表示原先数据库的measuments都复制到新的数据库。
|
|
340
|
+
|
|
341
|
+autogen是数据保留策略,原先数据库和新的数据库都必须有,否则INTO语句无法执行。
|
|
342
|
+
|
|
343
|
+GROUP BY *很关键,意思是把NOAA_water_database数据库中所有measuments下的所有tag也复制到copy_NOAA_water_database数据库。如果不这样写,原先数据库中measuments下的tag会变成copy_NOAA_water_database下的字段。
|
|
344
|
+
|
|
345
|
+具体步骤:
|
|
346
|
+--创建新的数据库:create database copy_NOAA_water_database
|
|
347
|
+--进入源数据库:use NOAA_water_database
|
|
348
|
+--使用INTO语句复制数据: SELECT * INTO "copy_NOAA_water_database"."autogen".:MEASUREMENT FROM "NOAA_water_database"."autogen"./.*/ GROUP BY *
|
|
349
|
+--进入新数据库:use copy_NOAA_water_database
|
|
350
|
+--查询新数据库的所有measurments:show measurements
|
|
351
|
+--查询新数据库是否有数据:select * from h2o_feet LIMIT 5
|
|
352
|
+
|
|
353
|
+```
|
|
354
|
+
|
|
355
|
+**如果数据量很大,建议按measuement和时间范围,循序渐进地复制**
|
|
356
|
+
|
|
357
|
+```
|
|
358
|
+SELECT *
|
|
359
|
+INTO <destination_database>.<retention_policy_name>.<measurement_name>
|
|
360
|
+FROM <source_database>.<retention_policy_name>.<measurement_name>
|
|
361
|
+WHERE time > now() - 100w and time < now() - 90w GROUP BY *
|
|
362
|
+
|
|
363
|
+SELECT *
|
|
364
|
+INTO <destination_database>.<retention_policy_name>.<measurement_name>
|
|
365
|
+FROM <source_database>.<retention_policy_name>.<measurement_name>}
|
|
366
|
+WHERE time > now() - 90w and time < now() - 80w GROUP BY *
|
|
367
|
+
|
|
368
|
+SELECT *
|
|
369
|
+INTO <destination_database>.<retention_policy_name>.<measurement_name>
|
|
370
|
+FROM <source_database>.<retention_policy_name>.<measurement_name>
|
|
371
|
+WHERE time > now() - 80w and time < now() - 70w GROUP BY *
|
|
372
|
+```
|
|
373
|
+
|
|
374
|
+**把查询结果复制到measument中去**
|
|
375
|
+
|
|
376
|
+```
|
|
377
|
+SELECT "water_level" INTO "h2o_feet_copy_1" FROM "h2o_feet" WHERE "location" = 'coyote_creek'
|
|
378
|
+```
|
|
379
|
+
|
|
380
|
+> 排序
|
|
381
|
+
|
|
382
|
+```
|
|
383
|
+根据时间降序:
|
|
384
|
+SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' ORDER BY time DESC
|
|
385
|
+
|
|
386
|
+分组排序:
|
|
387
|
+SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:42:00Z' GROUP BY time(12m) ORDER BY time DESC
|
|
388
|
+```
|
|
389
|
+
|
|
390
|
+>LIMIT和SLIMIT
|
|
391
|
+
|
|
392
|
+```
|
|
393
|
+限制point返回数量:
|
|
394
|
+SELECT "water_level","location" FROM "h2o_feet" LIMIT 3
|
|
395
|
+
|
|
396
|
+限制series返回数量:
|
|
397
|
+SELECT "water_level" FROM "h2o_feet" GROUP BY * SLIMIT 1
|
|
398
|
+```
|
|
399
|
+
|
|
400
|
+> OFFSET SOFFSET
|
|
401
|
+
|
|
402
|
+```
|
|
403
|
+显示point的第4,5,6条数据
|
|
404
|
+SELECT "water_level","location" FROM "h2o_feet" LIMIT 3 OFFSET 3
|
|
405
|
+
|
|
406
|
+显示point的第1,2,3条数据
|
|
407
|
+SELECT "water_level","location" FROM "h2o_feet" LIMIT 3
|
|
408
|
+
|
|
409
|
+SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:42:00Z' GROUP BY *,time(12m) ORDER BY time DESC LIMIT 2 OFFSET 2 SLIMIT 1
|
|
410
|
+
|
|
411
|
+显示serie的第2条数据
|
|
412
|
+SELECT "water_level" FROM "h2o_feet" GROUP BY * SLIMIT 1 SOFFSET 1
|
|
413
|
+```
|
|
414
|
+> Time Zone
|
|
415
|
+
|
|
416
|
+```
|
|
417
|
+选择时区基准
|
|
418
|
+SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:18:00Z' tz('America/Chicago')
|
|
419
|
+
|
|
420
|
+SELECT语句即使没有选择时间范围,也有默认时间范围:
|
|
421
|
+1677-09-21 00:12:43.145224194 and 2262-04-11T23:47:16.854775806Z
|
|
422
|
+
|
|
423
|
+GROUP BY time()的时间范围是从过去到现在:
|
|
424
|
+1677-09-21 00:12:43.145224194到现在
|
|
425
|
+
|
|
426
|
+使用RFC3339的时间类型字符串:
|
|
427
|
+SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00.000000000Z' AND time <= '2015-08-18T00:12:00Z'
|
|
428
|
+
|
|
429
|
+使用RFC3339-like的时间类型字符串:
|
|
430
|
+SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18' AND time <= '2015-08-18 00:12:00'
|
|
431
|
+
|
|
432
|
+使用epoch时间戳:
|
|
433
|
+ SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= 1439856000000000000 AND time <= 1439856720000000000
|
|
434
|
+
|
|
435
|
+ 使用second-precision epoch时间戳:
|
|
436
|
+ SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= 1439856000s AND time <= 1439856720s
|
|
437
|
+
|
|
438
|
+ 在RFC3339-like的时间类型字符串上运行计算:
|
|
439
|
+ SELECT "water_level" FROM "h2o_feet" WHERE time > '2015-09-18T21:24:00Z' + 6m
|
|
440
|
+
|
|
441
|
+在epoch时间戳上运行计算:
|
|
442
|
+SELECT "water_level" FROM "h2o_feet" WHERE time > 24043524m - 6m
|
|
443
|
+```
|
|
444
|
+
|
|
445
|
+> 相对时间
|
|
446
|
+
|
|
447
|
+```
|
|
448
|
+仅仅相对时间:
|
|
449
|
+SELECT "water_level" FROM "h2o_feet" WHERE time > now() - 1h
|
|
450
|
+
|
|
451
|
+相对时间和绝对时间结合:
|
|
452
|
+SELECT "level description" FROM "h2o_feet" WHERE time > '2015-09-18T21:18:00Z' AND time < now() + 1000d
|
|
453
|
+```
|
|
454
|
+
|
|
455
|
+> 正则表达式
|
|
456
|
+
|
|
457
|
+```
|
|
458
|
+选择tag或field中包含1:
|
|
459
|
+SELECT /l/ FROM "h2o_feet" LIMIT 1
|
|
460
|
+
|
|
461
|
+选择所有包含temperature的measurment中的degrees的平均值
|
|
462
|
+SELECT MEAN("degrees") FROM /temperature/
|
|
463
|
+
|
|
464
|
+location这个tag包含m, water_level这个field大于3:
|
|
465
|
+SELECT MEAN(water_level) FROM "h2o_feet" WHERE "location" =~ /[m]/ AND "water_level" > 3
|
|
466
|
+
|
|
467
|
+location这个tag没有值:
|
|
468
|
+SELECT * FROM "h2o_feet" WHERE "location" !~ /./
|
|
469
|
+
|
|
470
|
+location这个tag有值:
|
|
471
|
+SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" =~ /./
|
|
472
|
+
|
|
473
|
+level description这个字段的值包含between
|
|
474
|
+SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND "level description" =~ /between/
|
|
475
|
+
|
|
476
|
+分组时使用正则表达式:
|
|
477
|
+SELECT FIRST("index") FROM "h2o_quality" GROUP BY /l/
|
|
478
|
+```
|
|
479
|
+> 数据类型
|
|
480
|
+
|
|
481
|
+```
|
|
482
|
+返回water_level这个字段的类型是float:
|
|
483
|
+SELECT "water_level"::float FROM "h2o_feet" LIMIT 4
|
|
484
|
+```
|
|
485
|
+
|
|
486
|
+> 数据类型转换
|
|
487
|
+
|
|
488
|
+```
|
|
489
|
+把water_level的float类型的值转换成integer:
|
|
490
|
+SELECT "water_level"::integer FROM "h2o_feet" LIMIT 4
|
|
491
|
+
|
|
492
|
+把water_level的float类型的值转换成string(不支持):
|
|
493
|
+SELECT "water_level"::string FROM "h2o_feet" LIMIT 4
|
|
494
|
+```
|
|
495
|
+
|
|
496
|
+> 合并行为
|
|
497
|
+
|
|
498
|
+```
|
|
499
|
+默认把两个serie自动合并:
|
|
500
|
+SELECT MEAN("water_level") FROM "h2o_feet"
|
|
501
|
+
|
|
502
|
+避免自动合并:
|
|
503
|
+SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" = 'coyote_creek'
|
|
504
|
+
|
|
505
|
+分别得到两个serie的数据:
|
|
506
|
+SELECT MEAN("water_level") FROM "h2o_feet" GROUP BY "location"
|
|
507
|
+```
|
|
508
|
+
|
|
509
|
+> 多条语句
|
|
510
|
+
|
|
511
|
+```
|
|
512
|
+SELECT MEAN("water_level") FROM "h2o_feet"; SELECT "water_level" FROM "h2o_feet" LIMIT 2
|
|
513
|
+```
|
|
514
|
+
|
|
515
|
+> 子语句
|
|
516
|
+
|
|
517
|
+```
|
|
518
|
+SELECT SUM("max") FROM (SELECT MAX("water_level") FROM "h2o_feet" GROUP BY "location")
|
|
519
|
+```
|
|
520
|
+
|
|
521
|
+
|
|
522
|
+# InfluxQL-Schema exploration
|
|
523
|
+
|
|
524
|
+```
|
|
525
|
+展示所有数据库:
|
|
526
|
+SHOW DATABASES
|
|
527
|
+
|
|
528
|
+展示数据库的数据保留策略:
|
|
529
|
+SHOW RETENTION POLICIES ON NOAA_water_database
|
|
530
|
+
|
|
531
|
+展示某个数据库的所有时间序列:
|
|
532
|
+SHOW SERIES ON NOAA_water_database
|
|
533
|
+
|
|
534
|
+展示某个数据库某个表符合条件的时间序列:
|
|
535
|
+SHOW SERIES ON NOAA_water_database FROM "h2o_quality" WHERE "location" = 'coyote_creek' LIMIT 2
|
|
536
|
+
|
|
537
|
+展示某个数据库的所有表:
|
|
538
|
+SHOW MEASUREMENTS ON NOAA_water_database
|
|
539
|
+
|
|
540
|
+展示某个数据库某个以h2o开头的表,randtag这个tag的值包含整型:
|
|
541
|
+SHOW MEASUREMENTS ON NOAA_water_database WITH MEASUREMENT =~ /h2o.*/ WHERE "randtag" =~ /\d/
|
|
542
|
+
|
|
543
|
+展示某个数据库的所有tag的key:
|
|
544
|
+SHOW TAG KEYS ON "NOAA_water_database"
|
|
545
|
+
|
|
546
|
+展示TAG的值:
|
|
547
|
+SHOW TAG VALUES ON "NOAA_water_database" WITH KEY = "randtag"
|
|
548
|
+
|
|
549
|
+展示数据库字段的key:
|
|
550
|
+SHOW FIELD KEYS ON "NOAA_water_database"
|
|
551
|
+```
|
|
552
|
+
|
|
553
|
+# InfluxQL-Data management
|
|
554
|
+```
|
|
555
|
+创建数据库使用默认配置:
|
|
556
|
+CREATE DATABASE "NOAA_water_database"
|
|
557
|
+
|
|
558
|
+创建数据库自定义配置:
|
|
559
|
+CREATE DATABASE "NOAA_water_database" WITH DURATION 3d REPLICATION 1 SHARD DURATION 1H NAME "liquid"
|
|
560
|
+
|
|
561
|
+删除数据库:
|
|
562
|
+DROP DATABASE "NOAA_water_database"
|
|
563
|
+
|
|
564
|
+删除表中的时间序列:
|
|
565
|
+DROP SERIES FROM "h2o_feet"
|
|
566
|
+
|
|
567
|
+根据tag值删除时间序列:
|
|
568
|
+DROP SERIES FROM "h2o_feet" WHERE "location" = 'santa_monica'
|
|
569
|
+
|
|
570
|
+删除所有表记录:
|
|
571
|
+DELETE FROM "h2o_feet"
|
|
572
|
+
|
|
573
|
+带条件的删除:
|
|
574
|
+DELETE FROM "h2o_quality" WHERE "randtag" = '3'
|
|
575
|
+DELETE WHERE "h2o_quality" WHERE time < '2016-01-01'
|
|
576
|
+
|
|
577
|
+删除表:
|
|
578
|
+DROP MEASUREMENT "h2o_feet"
|
|
579
|
+
|
|
580
|
+删除shard:
|
|
581
|
+DROOP SHARD 1
|
|
582
|
+
|
|
583
|
+数据保留策略:DURATION最小1个小时,最大INF表示无穷;REPLICATION,决定了每个point在集群中有几份,默认是3份,为了确保数据及时响应给请求,这里的值最好小于等于集群中的数据节点。在单结点实例中REPLICATION的设置无效;SHARD DURATION设置Shard Group的时间范围,这里的值没有无线INF一说。默认情况下SHARD DURATION的值受RETENTION POLICY影响。SHARD DURATION的默认值是1小时。
|
|
584
|
+--CREATE RETENTION POLICY "one_day_only" ON "NOAA_water_database" DURATION 1d REPLICATION 1
|
|
585
|
+--把新的策略设置成默认策略:CREATE RETENTION POLICY "one_day_only" ON "NOAA_water_database" DURATION 23h60m REPLICATION 1 DEFAULT
|
|
586
|
+
|
|
587
|
+创建并修改策略:
|
|
588
|
+--创建策略:CREATE RETENTION PPLICY "what_is_time" ON "NOAA_water_database" DURATION 2d REPLICATION 1
|
|
589
|
+--修改策略:ALTER RETENTION POLICY "what_is_time" ON "NOAA_water_database" DURAITON 3w SHARD DURATION 2H DEFAULT
|
|
590
|
+
|
|
591
|
+删除策略:
|
|
592
|
+DROP RETENTION POLICY "what_is_time" ON "NOAA_water_database"
|
|
593
|
+```
|
|
594
|
+
|
|
595
|
+# InfluxQL-Continuous Queries
|
|
596
|
+
|
|
597
|
+自动或间隔运行并且保存在measurement中。
|
|
598
|
+
|
|
599
|
+**自动统计数据**:
|
|
600
|
+```
|
|
601
|
+CREATE CONTINUOUS QUERY "cq_basic" ON "transporation"
|
|
602
|
+BEGIN
|
|
603
|
+ SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h)
|
|
604
|
+END
|
|
605
|
+
|
|
606
|
+cq_basic是自动运行的query的名称,每小时从bus_data这个measurment中统计出来的数据保存到trasporation数据库中的average_passengers这个measurement中。
|
|
607
|
+
|
|
608
|
+select * from "average_passengers"
|
|
609
|
+```
|
|
610
|
+
|
|
611
|
+**自动统计数据,并保存到不同的RETENTION POLICY上**:
|
|
612
|
+```
|
|
613
|
+CREATE CONTINUOUS QUERY "cq_basic_rp" ON "transporation"
|
|
614
|
+BEGIN
|
|
615
|
+ SELECT mean("passengers") INTO "transporation"."three_weeks"."average_passengers" FROM "bus_data" GROUP BY time(1h)
|
|
616
|
+
|
|
617
|
+SELECT * FROM "transporation"."three_weeks"."average_passengers"
|
|
618
|
+```
|
|
619
|
+
|
|
620
|
+**自动统计数据,保存到不同的数据库**:
|
|
621
|
+```
|
|
622
|
+CREATE CONTINUOUS QUERY "cq_basic_br" ON "transporation"
|
|
623
|
+BEGIN
|
|
624
|
+ SELECT mean(*) INTO "downsampled_trasporation"."autogen".:MEASUREMENT FROM /.*/ GROUP BY time(30m)
|
|
625
|
+END
|
|
626
|
+```
|
|
627
|
+
|
|
628
|
+**自动统计数据,延迟保存到另外的表**:
|
|
629
|
+```
|
|
630
|
+CREATE CONTINUOUS QUERY "cq_basic_offset" ON "transporation"
|
|
631
|
+BEGIN
|
|
632
|
+ SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h,15m)
|
|
633
|
+```
|
|
634
|
+
|
|
635
|
+自动统计数据,每隔1小时统计一次,然后每30分钟统计一次,即半点的时候统计一次,最终半点的数据会被下一个整点的数据替换掉。
|
|
636
|
+```
|
|
637
|
+CREATE CONTINUOUS QUERY "cq_advanced_every" ON "transportation"
|
|
638
|
+RESAMPLE EVERY 30m
|
|
639
|
+BEGIN
|
|
640
|
+ SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h)
|
|
641
|
+END
|
|
642
|
+```
|
|
643
|
+
|
|
644
|
+自动统计数据,每30分钟统计一次数据,统计前1个小时的数据。
|
|
645
|
+```
|
|
646
|
+CREATE CONTINUOUS QUERY "cq_advanced_for" ON "transportation"
|
|
647
|
+RESAMPLE FOR 1h
|
|
648
|
+BEGIN
|
|
649
|
+ SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(30m)
|
|
650
|
+END
|
|
651
|
+```
|
|
652
|
+
|
|
653
|
+自动统计for和every结合起来:
|
|
654
|
+```
|
|
655
|
+CREATE CONTINUOUS QUERY "cq_advanced_every_for" ON "transportation"
|
|
656
|
+RESAMPLE EVERY 1h FOR 90m
|
|
657
|
+BEGIN
|
|
658
|
+ SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(30m)
|
|
659
|
+END
|
|
660
|
+```
|
|
661
|
+
|
|
662
|
+自动统计,填上空值
|
|
663
|
+```
|
|
664
|
+CREATE CONTINUOUS QUERY "cq_advanced_for_fill" ON "transportation"
|
|
665
|
+RESAMPLE FOR 2h
|
|
666
|
+BEGIN
|
|
667
|
+ SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h) fill(1000)
|
|
668
|
+END
|
|
669
|
+```
|
|
670
|
+
|
|
671
|
+展示所有Continuous Query
|
|
672
|
+```
|
|
673
|
+SHOW CONTINUOUS QUERIES
|
|
674
|
+```
|
|
675
|
+
|
|
676
|
+删除Continius Query
|
|
677
|
+```
|
|
678
|
+DROP CONTINOUS QUERY "idle_hands" ON ""
|
|
679
|
+```
|
|
680
|
+
|
|
681
|
+# InfluxQL-Functions
|
|
682
|
+
|
|
683
|
+- COUNT()
|
|
684
|
+- DISTNCT()
|
|
685
|
+- INTEGRAL()
|
|
686
|
+- MEAN()
|
|
687
|
+- MEDIAN()排好序的中位数
|
|
688
|
+- MODE()字段值中出现频率最高的值
|
|
689
|
+- SPREAD()字段值最大最小之差
|
|
690
|
+- STDDEV()字段值标准差
|
|
691
|
+- SUM()
|
|
692
|
+- BOTTOM()
|
|
693
|
+- FIRST()
|
|
694
|
+- LAST()
|
|
695
|
+- MAX()
|
|
696
|
+- MIN()
|
|
697
|
+- PERCENTILE()字段值某个百分位上的值
|
|
698
|
+- SAMPLE()随机样本
|
|
699
|
+- TOP()
|
|
700
|
+- ABS()
|
|
701
|
+- ACOS()
|
|
702
|
+- ASIN()
|
|
703
|
+- ATAN()
|
|
704
|
+- ATAN2()
|
|
705
|
+- CEL()
|
|
706
|
+- COS()
|
|
707
|
+- CUMULATIVE_SUM()
|
|
708
|
+- DERIVATIVE()变化率
|
|
709
|
+- DIFFERENCE()差值
|
|
710
|
+- ELAPSED()时间戳差值
|
|
711
|
+- EXP()指数
|
|
712
|
+- FLOOR()
|
|
713
|
+- LN()自然对数
|
|
714
|
+- LOG()
|
|
715
|
+- LOG2()
|
|
716
|
+- LOG10()
|
|
717
|
+- MOVING_AVERAGE()滚动窗口的平均值
|
|
718
|
+- NON_NEGATIVE_DERIVATIVE()非负变换率
|
|
719
|
+- NON_NEGATIVE_DIFFERENCE()非负差值
|
|
720
|
+- POW()
|
|
721
|
+- ROUND()
|
|
722
|
+- SIN()
|
|
723
|
+- SQRT()
|
|
724
|
+- TAN()
|
|
725
|
+
|
|
726
|
+
|
|
727
|
+
|
|
728
|
+# InfluxQL-Mathematical operations
|
|
729
|
+
|
|
730
|
+```
|
|
731
|
+加法:
|
|
732
|
+SELECT "A" + 5 FROM "add"
|
|
733
|
+
|
|
734
|
+减法:
|
|
735
|
+SELECT "A" - "B" from ""
|
|
736
|
+
|
|
737
|
+乘法:
|
|
738
|
+SELECT "A" * "B" * "C" from ""
|
|
739
|
+
|
|
740
|
+除法:
|
|
741
|
+SELECT 10 / "A" FROM ""
|
|
742
|
+
|
|
743
|
+取余:
|
|
744
|
+SELECT "B" % 2 FROM ""
|
|
745
|
+```
|
|
746
|
+
|