|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746 |
- # 基本概念
-
- InfluxDB基于行协议(line protocol),一个行代表这个point的数据。
-
- ```
- weather,location=us-midwest temperature=82 1465839830100400200
-
- 以上代表着:
- measurement,tag_set field_set timestamp
-
- weather就是measurement
- location=us-midwest就是tag_set, 是一组键值对
- temperature就是field_set,是一组键值对
- 1465839830100400200就是timestamp,即时间戳(016-06-13T17:43:50.1004002Z)
-
- 注意:
- --measurement和field_set以及field_set和timestamp之间都有一个空格
- --timestamp是Unix型纳秒级,如果不填,会默认使用服务器的纳秒级UTC时间戳.当使用服务器集群的时候,这些服务器集群的时间必须同步,否则会造成数据的不准确
-
- 举例:
- --weather,location=us-midwest,season=summer temperature=82 1465839830100400200
- --weather,location=us-midwest temperature=82,humidity=71 1465839830100400200
- ```
-
- **数据类型**
-
- ```
- 在tag_set中,tag的值是string类型,InfluxDB不能基于tag的string类型值进行运算,即不能把tag的值作为InfluxQL函数的参数
-
- 时间戳,timestamp是UNIX类型,最小时间戳-9223372036854775806,即1677-09-21T00:12:43.145224194Z。最大时间戳9223372036854775806,即2262-04-11T23:47:16.854775806Z。默认情况下时间戳的精度是纳秒,可以通过API更换时间戳的精度。
-
- Field值类型可以是float,integer, string, boolean。
- --weather,location=us-midwest temperature=82 1465839830100400200这里的82会被看作是float类型
- --weather,location=us-midwest temperature=82i 1465839830100400200这里的82会被看作是integer类型
- --weather,location=us-midwest temperature="too warm" 1465839830100400200这里的too warm会被看作是string类型
- --weather,location=us-midwest too_hot=true 1465839830100400200,这里的true就是boolean类型,表示true的可以是t,T, true, True, TRUE,表示false的可以是f,F, false, False, FALSE
-
- 在同一个分片shard中存储不同类型的field值会报错:
- --INSERT weather,location=us-midwest temperature=82 1465839830100400200
- --INSERT weather,location=us-midwest temperature=82i 1465839830100400300
- ERR:{"error":"field type conflict:input field\"temperature\" on measuremetn \"weather\" is type int64}
-
- 但是在不同的分片Shard中存储不同类型的field值不会报错:
- --INSERT weather,location=us-midwest temperature=82 1465839830100400200
- --INSERT weather,location=us-midwest temperature=82i 1465839830100400300
- ```
-
- **引号**
-
- ```
- 不要在时间戳上加双引号:
- --INSERT weather,location=us-midwest temperature=82 "1465839830100400200"
- ERR: {"error":"unable to parse 'weather,location=us-midwest temperature=82 \"1465839830100400200\"': bad timestamp"}
-
- 不要在字段field值上加单引号:
- --INSERT weather,location=us-midwest temperature='too warm'
- ERR: {"error":"unable to parse 'weather,location=us-midwest temperature='too warm'': invalid boolean"}
-
- 不要在tag的key,value,field的key上加单引号或双引号,这样虽然不会报错,但InfluxDB会把引号看作是measruements的一部分:
- --INSERT "weather",location=us-midwest temperature=87 1465839830100400200
- --SHOW MEASURMENTS
- --会列出"weather"
- --这样查询起来会麻烦:SELECT * FROM "\"weather\""
-
- 不要在filed值上加双引号,InfluxDB会看作是字符串类型:
- --INSERT weather,location=us-midwest temperatrue="82"
- ```
-
- **特殊字符Special Characters**
-
- ```
- ,通过\转义:
- weather,location=us\,midwest temperature=82 1465839830100400200
-
- =通过\转义:
- weather,location=us-midwest temp\=rature=82 1465839830100400200
-
- 空格通过\转义:
- weather,location\ place=us-midwest temperature=82 1465839830100400200
-
- measurement中的,通过\转义:
- wea\,ther,lication=us-midwest temperature=82 1465839830100400200
-
- measurement中的空格通过\转义:
- wea\ ther,location=us-midwest temperature=82 1465839830100400200
-
- 字段filed值中的双引号用\转义:
- weather,location=us-midwest temperature="too\"hot\"" 1465839830100400200
-
- /或\的表现:
- --weather,location=us-midwest temperature_str="too hot/cold" 1465839830100400201
- --weather,location=us-midwest temperature_str="too hot\cold" 1465839830100400202
- --weather,location=us-midwest temperature_str="too hot\\cold" 1465839830100400203
- --weather,location=us-midwest temperature_str="too hot\\\cold" 1465839830100400204
- --weather,location=us-midwest temperature_str="too hot\\\\\cold" 1465839830100400205
- --weather,location=us-midwest temperature_str="too hot\\\\\cold" 1465839830100400206
-
- > SELECT * FROM "wather"
- name:weather
- time location temperature_str
- 1465839830100400201 us-midwest too hot/cold
- 1465839830100400202 us-midwest too hot\cold
- 1465839830100400203 us-midwest too hot\cold 两个会去掉一个
- 1465839830100400204 us-midwest too hot\\cold 三个去掉一个
- 1465839830100400205 us-midwest too hot\\cold 四个去掉两个
- 1465839830100400206 us-midwest too hot\\\cold 5个去掉两个
- ```
-
- **关键字Keywords**
-
- ```
- time可以是database, measurement, retension plocy, subscription, user的名称,time不能作为tag或field的key
- ```
-
- **聚合aggregation**
-
- InfluxQL函数,对一组数据进行计算。
-
- ```
-
- ==COUNT()
- > SELECT COUNT("water_level") FROM "h2o_feet"
- 返回h2o_feet"这个measurement中water_level这个字段field值不为空的数量
-
- > SELECT COUNT(*) FROM "h2o_feet"
- 返回h2o_feet"这个measurement中所有字段字段field值不为空的数量
-
- > SELECT COUNT(/water/) FROM "h2o_feet"
- 返回h2o_feet"这个measurement中字段包含water并且值不为空的数量
-
- > SELECT COUNT("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(200) LIMIT 7 SLIMIT 1
- 时间范围,12分钟的时间间隔进行分组,没有值的用200填充,数据点个数最多为7,序列个数最多为1
- ```
-
- # InfluxQL-基本
-
- **连接和退出数据库**
-
- ```
- $ .\influx -precision rfc3339
- Connected to http://localhost:8086 version1.7.7
- InfluxDB shell version:1.7.1
-
- rfc3339的时间戳格式是:YYYY-MM-DDTHH:MM:SS.nnnnnnnnnZ
-
- $ exit
-
- ```
-
- **创建数据库**
-
- - 运行`influxd.exe`文件
- - 启动influx: `./influx -precision rfc3339`
- - 创建数据库
- ```
- $ CREATE DATABASE NOAA_water_database
- ```
-
- **下载测试数据并写入本地数据库**
-
- ```
- 下载数据:
- $ curl https://s3.amazonaws.com/noaa.water-database/NOAA_data.txt -o NOAA_data.txt
- 这样在目录中多了一个NOAA_data.txt文件
-
- 导入本地数据库:
- $ ./influx -import -path=NOAA_data.txt -precision=s -database=NOAA_water_database
- 这时会报错:unknown arguments: .txt -precision=s
- 在`influx.exe`文件所在目录,把`NOAA_data.txt`改成`NOAA_data`
- $ ./influx -import -path=NOAA_data -precision=s -database=NOAA_water_database
-
- 连接数据库:
- $ ./influx -precsion rfc3339 -database NOAA_water_database
-
- 查询所有的表,即measument:
- $ SHOW measurements
- ```
-
- # InfluxQL-Data exploration
- > 查询
-
- **统计某个非空值字段的数量**
-
- ```
- SELECT COUNT("water_level") FROM h2o_feet
- ```
-
- **选择前几个**
-
- ```
- SELECT * FROM h2o_feet LIMIT 5
- ```
-
- **查询所有fields和tags**
- ```
- SELECT * FROM "h2o_feet"
- ```
-
- **选择特定的tag和field**
-
- ```
- $ ./influx -precsion rfc3339
- $ USE NOAA_water_database
- $ SELECT "level description","location","water_level" FROM "h2o_feet"
- ```
-
- **选择tag和field,用类型区分**
-
- ```
- SELECT "level description"::field,"location"::tag,"water_level"::field FROM "h2o_feet"
- ```
-
- **选择所有的field**
-
- ```
- SELECT *::field FROM "h2o_feet"
- ```
-
- **field简单计算**
- ```
- SELECT ("water_level" * 2) + 4 from "h2o_feet"
- ```
-
- **从多个measurements中查询数据**
- ```
- select * from "h2o_feet","h2o_PH"
- ```
-
- **从多个measurements中查询数据,用上数据库名**
-
- ```
- select * from "NOAA_water_database"."autogen"."h2o_feet"
- ```
-
- **查询某个数据库中某个measuremnt的所有数据**
-
- ```
- select * from "NOAA_water_database".."h2o_feet"
- ```
-
- **查询与tag相关的数据必须至少带一个field**
- ```
- select "water_level","location" from "h2o_feet"
- ```
-
- > 过滤
-
- **Where语句语法**
-
- ```
- field支持的操作符:
- field_key <operator> ['string' | boolean | float | integer]
- = <> != > >= < <=
-
- tag支持的操作符:
- tag_key <operator> ['tag_value']
- = <> !=
- ```
-
- **根据字段值筛选**
- ```
- select * from "h2o_feet" where "water_level">8
- ```
-
- **根据某个字段的字符串值筛选**
-
- ```
- select * from "h2o_feet" where "level description" = 'below 3 feet'
- ```
-
- **根据某个计算筛选**
- ```
- select * from "h2o_feet" where "water_level" + 2 > 11.9
- ```
-
- **根据某个tag值筛选**
- ```
- select "water_level" from "h2o_feet" wehre "location" = 'santa_monica'
- ```
-
- **根据tag和field筛选**
- ```
- select "water_level" from "h2o_feet" where "location" <> 'santa_monica' adn (water_level < -0.59 OR water_level > 9.95)
- ```
-
- **根据timestamp筛选**
- ```
- select * from h2o_feet wehre time > now() -7d
- ```
-
- > 分组
-
- **根据tag分组**
-
- ```
- select MEAN(water_level) from h2o_feet group by location
- 根据location分组后,取每个分组中water_level字段的平均值
- ```
-
- **根据多个tag分组**
- ```
- select MEAN(index) from h2o_feet group by lcoation,randtag
- ```
-
- **根据所有tag分组**
- ```
- select MEAN(index) from h2o_feet group by *
- ```
-
- **根据时间间隔分组**
- ```
- SELECT COUNT("water_level") FROM "h2o_feet" WHERE "location"='coyote_creek' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m)
- ```
-
- **根据时间间隔和tag分组**
- ```
- SELECT COUNT("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m),"location"
- ```
-
- **根据时间间隔分组并移前**
- ```
- SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location"='coyote_creek' AND time >= '2015-08-18T00:06:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(18m,6m)
- ```
-
- **groupby和fill的结合**
-
- ```
- > SELECT MAX("water_level") FROM "h2o_feet" WHERE "location"='coyote_creek' AND time >= '2015-09-18T16:00:00Z' AND time <= '2015-09-18T16:42:00Z' GROUP BY time(12m) fill(100)
- ```
-
- > INTO
-
- **在原来数据库基础上复制出一个新的数据库**
-
- 重命名一个数据库是不可能的,只能在原来数据库基础上创建一个新的数据库,用INTO语法。
- ```
- SELECT * INTO "copy_NOAA_water_database"."autogen".:MEASUREMENT FROM "NOAA_water_database"."autogen"./.*/ GROUP BY *
-
- :MEASUREMENT表示原先数据库的measuments都复制到新的数据库。
-
- autogen是数据保留策略,原先数据库和新的数据库都必须有,否则INTO语句无法执行。
-
- GROUP BY *很关键,意思是把NOAA_water_database数据库中所有measuments下的所有tag也复制到copy_NOAA_water_database数据库。如果不这样写,原先数据库中measuments下的tag会变成copy_NOAA_water_database下的字段。
-
- 具体步骤:
- --创建新的数据库:create database copy_NOAA_water_database
- --进入源数据库:use NOAA_water_database
- --使用INTO语句复制数据: SELECT * INTO "copy_NOAA_water_database"."autogen".:MEASUREMENT FROM "NOAA_water_database"."autogen"./.*/ GROUP BY *
- --进入新数据库:use copy_NOAA_water_database
- --查询新数据库的所有measurments:show measurements
- --查询新数据库是否有数据:select * from h2o_feet LIMIT 5
-
- ```
-
- **如果数据量很大,建议按measuement和时间范围,循序渐进地复制**
-
- ```
- SELECT *
- INTO <destination_database>.<retention_policy_name>.<measurement_name>
- FROM <source_database>.<retention_policy_name>.<measurement_name>
- WHERE time > now() - 100w and time < now() - 90w GROUP BY *
-
- SELECT *
- INTO <destination_database>.<retention_policy_name>.<measurement_name>
- FROM <source_database>.<retention_policy_name>.<measurement_name>}
- WHERE time > now() - 90w and time < now() - 80w GROUP BY *
-
- SELECT *
- INTO <destination_database>.<retention_policy_name>.<measurement_name>
- FROM <source_database>.<retention_policy_name>.<measurement_name>
- WHERE time > now() - 80w and time < now() - 70w GROUP BY *
- ```
-
- **把查询结果复制到measument中去**
-
- ```
- SELECT "water_level" INTO "h2o_feet_copy_1" FROM "h2o_feet" WHERE "location" = 'coyote_creek'
- ```
-
- > 排序
-
- ```
- 根据时间降序:
- SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' ORDER BY time DESC
-
- 分组排序:
- SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:42:00Z' GROUP BY time(12m) ORDER BY time DESC
- ```
-
- >LIMIT和SLIMIT
-
- ```
- 限制point返回数量:
- SELECT "water_level","location" FROM "h2o_feet" LIMIT 3
-
- 限制series返回数量:
- SELECT "water_level" FROM "h2o_feet" GROUP BY * SLIMIT 1
- ```
-
- > OFFSET SOFFSET
-
- ```
- 显示point的第4,5,6条数据
- SELECT "water_level","location" FROM "h2o_feet" LIMIT 3 OFFSET 3
-
- 显示point的第1,2,3条数据
- SELECT "water_level","location" FROM "h2o_feet" LIMIT 3
-
- SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:42:00Z' GROUP BY *,time(12m) ORDER BY time DESC LIMIT 2 OFFSET 2 SLIMIT 1
-
- 显示serie的第2条数据
- SELECT "water_level" FROM "h2o_feet" GROUP BY * SLIMIT 1 SOFFSET 1
- ```
- > Time Zone
-
- ```
- 选择时区基准
- SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:18:00Z' tz('America/Chicago')
-
- SELECT语句即使没有选择时间范围,也有默认时间范围:
- 1677-09-21 00:12:43.145224194 and 2262-04-11T23:47:16.854775806Z
-
- GROUP BY time()的时间范围是从过去到现在:
- 1677-09-21 00:12:43.145224194到现在
-
- 使用RFC3339的时间类型字符串:
- SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00.000000000Z' AND time <= '2015-08-18T00:12:00Z'
-
- 使用RFC3339-like的时间类型字符串:
- SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18' AND time <= '2015-08-18 00:12:00'
-
- 使用epoch时间戳:
- SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= 1439856000000000000 AND time <= 1439856720000000000
-
- 使用second-precision epoch时间戳:
- SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= 1439856000s AND time <= 1439856720s
-
- 在RFC3339-like的时间类型字符串上运行计算:
- SELECT "water_level" FROM "h2o_feet" WHERE time > '2015-09-18T21:24:00Z' + 6m
-
- 在epoch时间戳上运行计算:
- SELECT "water_level" FROM "h2o_feet" WHERE time > 24043524m - 6m
- ```
-
- > 相对时间
-
- ```
- 仅仅相对时间:
- SELECT "water_level" FROM "h2o_feet" WHERE time > now() - 1h
-
- 相对时间和绝对时间结合:
- SELECT "level description" FROM "h2o_feet" WHERE time > '2015-09-18T21:18:00Z' AND time < now() + 1000d
- ```
-
- > 正则表达式
-
- ```
- 选择tag或field中包含1:
- SELECT /l/ FROM "h2o_feet" LIMIT 1
-
- 选择所有包含temperature的measurment中的degrees的平均值
- SELECT MEAN("degrees") FROM /temperature/
-
- location这个tag包含m, water_level这个field大于3:
- SELECT MEAN(water_level) FROM "h2o_feet" WHERE "location" =~ /[m]/ AND "water_level" > 3
-
- location这个tag没有值:
- SELECT * FROM "h2o_feet" WHERE "location" !~ /./
-
- location这个tag有值:
- SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" =~ /./
-
- level description这个字段的值包含between
- SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND "level description" =~ /between/
-
- 分组时使用正则表达式:
- SELECT FIRST("index") FROM "h2o_quality" GROUP BY /l/
- ```
- > 数据类型
-
- ```
- 返回water_level这个字段的类型是float:
- SELECT "water_level"::float FROM "h2o_feet" LIMIT 4
- ```
-
- > 数据类型转换
-
- ```
- 把water_level的float类型的值转换成integer:
- SELECT "water_level"::integer FROM "h2o_feet" LIMIT 4
-
- 把water_level的float类型的值转换成string(不支持):
- SELECT "water_level"::string FROM "h2o_feet" LIMIT 4
- ```
-
- > 合并行为
-
- ```
- 默认把两个serie自动合并:
- SELECT MEAN("water_level") FROM "h2o_feet"
-
- 避免自动合并:
- SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" = 'coyote_creek'
-
- 分别得到两个serie的数据:
- SELECT MEAN("water_level") FROM "h2o_feet" GROUP BY "location"
- ```
-
- > 多条语句
-
- ```
- SELECT MEAN("water_level") FROM "h2o_feet"; SELECT "water_level" FROM "h2o_feet" LIMIT 2
- ```
-
- > 子语句
-
- ```
- SELECT SUM("max") FROM (SELECT MAX("water_level") FROM "h2o_feet" GROUP BY "location")
- ```
-
-
- # InfluxQL-Schema exploration
-
- ```
- 展示所有数据库:
- SHOW DATABASES
-
- 展示数据库的数据保留策略:
- SHOW RETENTION POLICIES ON NOAA_water_database
-
- 展示某个数据库的所有时间序列:
- SHOW SERIES ON NOAA_water_database
-
- 展示某个数据库某个表符合条件的时间序列:
- SHOW SERIES ON NOAA_water_database FROM "h2o_quality" WHERE "location" = 'coyote_creek' LIMIT 2
-
- 展示某个数据库的所有表:
- SHOW MEASUREMENTS ON NOAA_water_database
-
- 展示某个数据库某个以h2o开头的表,randtag这个tag的值包含整型:
- SHOW MEASUREMENTS ON NOAA_water_database WITH MEASUREMENT =~ /h2o.*/ WHERE "randtag" =~ /\d/
-
- 展示某个数据库的所有tag的key:
- SHOW TAG KEYS ON "NOAA_water_database"
-
- 展示TAG的值:
- SHOW TAG VALUES ON "NOAA_water_database" WITH KEY = "randtag"
-
- 展示数据库字段的key:
- SHOW FIELD KEYS ON "NOAA_water_database"
- ```
-
- # InfluxQL-Data management
- ```
- 创建数据库使用默认配置:
- CREATE DATABASE "NOAA_water_database"
-
- 创建数据库自定义配置:
- CREATE DATABASE "NOAA_water_database" WITH DURATION 3d REPLICATION 1 SHARD DURATION 1H NAME "liquid"
-
- 删除数据库:
- DROP DATABASE "NOAA_water_database"
-
- 删除表中的时间序列:
- DROP SERIES FROM "h2o_feet"
-
- 根据tag值删除时间序列:
- DROP SERIES FROM "h2o_feet" WHERE "location" = 'santa_monica'
-
- 删除所有表记录:
- DELETE FROM "h2o_feet"
-
- 带条件的删除:
- DELETE FROM "h2o_quality" WHERE "randtag" = '3'
- DELETE WHERE "h2o_quality" WHERE time < '2016-01-01'
-
- 删除表:
- DROP MEASUREMENT "h2o_feet"
-
- 删除shard:
- DROOP SHARD 1
-
- 数据保留策略:DURATION最小1个小时,最大INF表示无穷;REPLICATION,决定了每个point在集群中有几份,默认是3份,为了确保数据及时响应给请求,这里的值最好小于等于集群中的数据节点。在单结点实例中REPLICATION的设置无效;SHARD DURATION设置Shard Group的时间范围,这里的值没有无线INF一说。默认情况下SHARD DURATION的值受RETENTION POLICY影响。SHARD DURATION的默认值是1小时。
- --CREATE RETENTION POLICY "one_day_only" ON "NOAA_water_database" DURATION 1d REPLICATION 1
- --把新的策略设置成默认策略:CREATE RETENTION POLICY "one_day_only" ON "NOAA_water_database" DURATION 23h60m REPLICATION 1 DEFAULT
-
- 创建并修改策略:
- --创建策略:CREATE RETENTION PPLICY "what_is_time" ON "NOAA_water_database" DURATION 2d REPLICATION 1
- --修改策略:ALTER RETENTION POLICY "what_is_time" ON "NOAA_water_database" DURAITON 3w SHARD DURATION 2H DEFAULT
-
- 删除策略:
- DROP RETENTION POLICY "what_is_time" ON "NOAA_water_database"
- ```
-
- # InfluxQL-Continuous Queries
-
- 自动或间隔运行并且保存在measurement中。
-
- **自动统计数据**:
- ```
- CREATE CONTINUOUS QUERY "cq_basic" ON "transporation"
- BEGIN
- SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h)
- END
-
- cq_basic是自动运行的query的名称,每小时从bus_data这个measurment中统计出来的数据保存到trasporation数据库中的average_passengers这个measurement中。
-
- select * from "average_passengers"
- ```
-
- **自动统计数据,并保存到不同的RETENTION POLICY上**:
- ```
- CREATE CONTINUOUS QUERY "cq_basic_rp" ON "transporation"
- BEGIN
- SELECT mean("passengers") INTO "transporation"."three_weeks"."average_passengers" FROM "bus_data" GROUP BY time(1h)
-
- SELECT * FROM "transporation"."three_weeks"."average_passengers"
- ```
-
- **自动统计数据,保存到不同的数据库**:
- ```
- CREATE CONTINUOUS QUERY "cq_basic_br" ON "transporation"
- BEGIN
- SELECT mean(*) INTO "downsampled_trasporation"."autogen".:MEASUREMENT FROM /.*/ GROUP BY time(30m)
- END
- ```
-
- **自动统计数据,延迟保存到另外的表**:
- ```
- CREATE CONTINUOUS QUERY "cq_basic_offset" ON "transporation"
- BEGIN
- SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h,15m)
- ```
-
- 自动统计数据,每隔1小时统计一次,然后每30分钟统计一次,即半点的时候统计一次,最终半点的数据会被下一个整点的数据替换掉。
- ```
- CREATE CONTINUOUS QUERY "cq_advanced_every" ON "transportation"
- RESAMPLE EVERY 30m
- BEGIN
- SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h)
- END
- ```
-
- 自动统计数据,每30分钟统计一次数据,统计前1个小时的数据。
- ```
- CREATE CONTINUOUS QUERY "cq_advanced_for" ON "transportation"
- RESAMPLE FOR 1h
- BEGIN
- SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(30m)
- END
- ```
-
- 自动统计for和every结合起来:
- ```
- CREATE CONTINUOUS QUERY "cq_advanced_every_for" ON "transportation"
- RESAMPLE EVERY 1h FOR 90m
- BEGIN
- SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(30m)
- END
- ```
-
- 自动统计,填上空值
- ```
- CREATE CONTINUOUS QUERY "cq_advanced_for_fill" ON "transportation"
- RESAMPLE FOR 2h
- BEGIN
- SELECT mean("passengers") INTO "average_passengers" FROM "bus_data" GROUP BY time(1h) fill(1000)
- END
- ```
-
- 展示所有Continuous Query
- ```
- SHOW CONTINUOUS QUERIES
- ```
-
- 删除Continius Query
- ```
- DROP CONTINOUS QUERY "idle_hands" ON ""
- ```
-
- # InfluxQL-Functions
-
- - COUNT()
- - DISTNCT()
- - INTEGRAL()
- - MEAN()
- - MEDIAN()排好序的中位数
- - MODE()字段值中出现频率最高的值
- - SPREAD()字段值最大最小之差
- - STDDEV()字段值标准差
- - SUM()
- - BOTTOM()
- - FIRST()
- - LAST()
- - MAX()
- - MIN()
- - PERCENTILE()字段值某个百分位上的值
- - SAMPLE()随机样本
- - TOP()
- - ABS()
- - ACOS()
- - ASIN()
- - ATAN()
- - ATAN2()
- - CEL()
- - COS()
- - CUMULATIVE_SUM()
- - DERIVATIVE()变化率
- - DIFFERENCE()差值
- - ELAPSED()时间戳差值
- - EXP()指数
- - FLOOR()
- - LN()自然对数
- - LOG()
- - LOG2()
- - LOG10()
- - MOVING_AVERAGE()滚动窗口的平均值
- - NON_NEGATIVE_DERIVATIVE()非负变换率
- - NON_NEGATIVE_DIFFERENCE()非负差值
- - POW()
- - ROUND()
- - SIN()
- - SQRT()
- - TAN()
-
-
-
- # InfluxQL-Mathematical operations
-
- ```
- 加法:
- SELECT "A" + 5 FROM "add"
-
- 减法:
- SELECT "A" - "B" from ""
-
- 乘法:
- SELECT "A" * "B" * "C" from ""
-
- 除法:
- SELECT 10 / "A" FROM ""
-
- 取余:
- SELECT "B" % 2 FROM ""
- ```
-
|